skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perez-Galvez, Fernan R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Scoring thermal tolerance traits live or with recorded video can be time consuming and susceptible to observer bias, and as with many physiological measurements, there can be trade-offs between accuracy and throughput. Recent studies show that automated particle tracking is a viable alternative to manually scoring videos, although some of the software options are proprietary and costly. In this study, we present a novel strategy for automated scoring of thermal tolerance videos by inferring motor activity with motion detection using an open-source Python command line application called DIME (detector of insect motion endpoint). We apply our strategy to both dynamic and static thermal tolerance assays, and our results indicate that DIME can accurately measure thermal acclimation responses, generally agrees with visual estimates of thermal limits, and can significantly increase throughput over manual methods. 
    more » « less